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Abstract

This paper examines the combined effects of temperature, strain gradient and inertia on the growth of voids in ductile

fracture. A dislocation-based gradient plasticity theory [J. Mech. Phys. Solids 47 (1999) 1239, J. Mech. Phys. Solids 48

(2000) 99] is applied, and temperature effects are incorporated. Since a strong size-dependence is introduced into the

dynamic growth of voids through gradient plasticity, a cut-off size is then set by the stress level of the applied loading.

Only those voids that are initially larger than the cut-off size can grow rapidly. At the early stages of void growth, the

effects of strain gradients greatly increase the stress level. Therefore, thermal softening has a strong effect in lowering the

threshold stress for the unstable growth of voids. Once the voids start rapid growth, however, the influence of strain

gradients will decrease, and the rate of dynamic void growth predicted by strain gradient plasticity approaches that

predicted by classical plasticity theories.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

Ductile fracture in many metals begins with the nucleation of voids from foreign particles (by brittle
cracking or decohesion of particles) or other defects. Voids then grow through plastic deformation of the

surrounding medium. The growth of a number of voids eventually leads to void coalescence and ductile

fracture. The relics of the voids are still observed on the fracture surface, so that ductile fracture is typically

characterized by a dimpled fracture surface.

Foreign particles contained in a typical metal usually have various sizes from tens or hundreds of na-

nometers (such as carbide particles) to a few tens of micrometers (such as large sulphides and oxides).

Experiments indicate that there is not enough sulphide or oxide inclusions to account for the numerous

large cavities found at typical fracture surfaces (Baucer and Wilsdorf, 1973; Faleskog and Shih, 1997). It
appears that some of the large voids might have originated from very small foreign particles, like carbides,
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or from preexisting cavities. Small-angle neutron scattering and TEM experiments have found that cavities

on the order of tens of nanometers exist in metal alloys (Page et al., 1984; Zakaria and Munroe, 2002).

When cavities grow from tens or hundreds of nanometers to tens or hundreds of micrometers, the matrix

material surrounding voids must experience extremely large plastic deformations and strong gradients of
plastic strains then exist due to geometry. Recently, many convincing experiments, mainly from micro-

indentation or nano-indentation (Ma and Clarke, 1995; Nix and Gao, 1998; Shu and Fleck, 1998; Swadener

et al., 2002), have shown that materials display strong size effects, when the characteristic length scale

associated with non-uniform plastic deformation is on the order of microns. Classical plasticity theories do

not have an intrinsic material length scale and thus fail to capture this strong size dependency of material

behaviors. Several strain gradient plasticity theories have been proposed to address this problem. Among

them, a physics-oriented model is strain gradient plasticity based on dislocation theory, which has been

introduced by Gao, Huang and coworkers (Gao et al., 1999; Huang et al., 2000). This dislocation-based
strain gradient plasticity approach will be adopted in this paper.

On the micron or submicron scales, the effect of strain gradient has been found to significantly increase

the stress level for the unstable growth of voids (Fleck and Hutchinson, 1997; Huang et al., 2000). This

significant increase of stress could result in much more plastic work being done. Since thermal softening is

related to the amount of plastic work dissipated as heat, it could become a more important issue for void

growth with strain gradient plasticity, as compared to the fairly weak effects of thermal softening predicted

by classical plasticity theories (Cortes, 1992b; Tong and Ravichandran, 1993, 1995). Therefore, it is

worthwhile incorporating temperature effects into strain gradient plasticity. Because of the influence of
temperature on the dislocation densities, it is convenient to incorporate temperature effects in the frame-

work of dislocation-based strain gradient plasticity theory.

In addition to the effects of strain gradient and temperature, the effect of inertia is another key to un-

derstanding void growth. Since Carroll and Holt�s pioneering work (Carroll and Holt, 1972), it has been

recognized that inertia stabilizes the growth of voids (Cortes, 1992a,b; Ortiz and Molinari, 1992; Tong and

Ravichandran, 1995; Wang, 1994a,b; Worswick and Pick, 1995). In a prior work (Wu et al., 2003a), we

have extended Ortiz and Molinari�s single spherical void model (Ortiz and Molinari, 1992) and adopted the

concept of the critical stress from cavitation instability (Huang et al., 1991) to examine the effects of inertia,
rate dependency and temperature on void growth. We found that the effects of inertia dominate the growth

of the void in the long term so that the void growth rate becomes independent of the initial size shortly after

the applied stress exceeds the critical stress. This result sheds new insight on the observed morphology of

fracture surfaces. Because strain gradient effects may greatly increase the critical stress level for the unstable

growth of voids, we will reexamine the effect of inertia on void growth in the framework of strain gradient

plasticity.

In this paper, we incorporate thermal softening into dislocation-based strain gradient plasticity and

reconstruct the constitutive laws. Then, we examine the combined effects of strain gradients and adiabatic
thermal softening on the critical stress for the unstable growth of voids. Finally, numerical calculations are

performed to study void growth with the combined effects of inertia, thermal softening, heat conduction

and strain gradient.
2. Constitutive laws for strain gradient plasticity

In this section, we start with the Taylor relation and incorporate a thermal effect into strain gradient

plasticity. Next, we reconstruct the constitutive law based on the multiscale approach proposed by Gao,

Huang and coworkers (Gao et al., 1999; Huang et al., 2000). Finally, we describe the conservation of
energy, following the kinematics of deformation. Throughout the paper, the material is assumed to be



X.Y. Wu et al. / International Journal of Solids and Structures 40 (2003) 6633–6651 6635
homogenous, isotropic and plastically incompressible. Because the plastic deformation region is limited,

linear elasticity is explicitly included in the calculations.
2.1. Incorporation of thermal softening into strain gradient plasticity

The Taylor relation between the shear strength and dislocation density in a material is
s ¼ alb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qS þ qG

p
; ð1Þ
where s is the shear stress, l is the shear modulus, b is the Burgers vector, qT is the total dislocation density,

qS is the density of statistically stored dislocations, qG is the density of geometrically necessary dislocations,

and a is an empirical constant (�0.3). From the Taylor relation, Gao et al. (1999) then obtained a con-
stitutive function:
r ¼ rY

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2ðeÞ þ lg

p
: ð2Þ
Here, rY is the yield stress, e is the effective strain, g is the effective plastic strain gradient (explicitly defined

later in this paper), l is the intrinsic material length and r ¼ Ms is the effective stress. M (the Taylor factor)

is the ratio of tensile flow stress to shear flow stress (for polycrystalline FCC materials M ¼ 3:06 (Bishop

and Hill, 1951a,b)). f ðeÞ is a plastic strain-hardening function. The material is assumed to obey power-law

plastic strain hardening and linear elasticity so that f ðeÞ ¼ ðe=eYÞn for eP eY and f ðeÞ ¼ e=eY for e6 eY.
In the absence of a strain gradient (g ¼ 0 so that qG ¼ 0), the density of statistically stored dislocations

qS can be expressed in terms of the strain-hardening function f ðeÞ:
qS ¼ rYf ðeÞð � rYÞ2= Malb
� �2

: ð3Þ
Geometrically necessary dislocations appear in the strain gradient field for compatible deformation.

Arsenlis and Parks (1999) have constructed a relation between the density of geometrically necessary

dislocations qG and the effective plastic strain gradient g.
qG ¼ kg=b; ð4Þ

where k is Nye�s factor (in polycrystalline FCC materials, k ¼ 1:85 for torsion and k ¼ 1:93 for bending).

Using Eq. (4) in (1) and then comparing with (2), one obtains the intrinsic material length as
l ¼ M
2
a2ðl=rYÞ2kb: ð5Þ
For example, for polycrystalline FCC metals in the bending case this material length scale would be

l � 18a2ðl=rYÞ2b. For non-uniform plastic deformations, the effects of plastic strain gradient are important

when the characteristic length associated with the deformation becomes comparable to the intrinsic ma-

terial length l. For most structural engineering materials, the intrinsic material length is on the order of

microns (for very pure metals, l could be orders of magnitude larger). Therefore, the effect of plastic strain

gradient may be an important issue in the problem of growth of microvoids (on the order of microns or
smaller).

Up to this point, all of our discussions are based on the isothermal assumption. However, our appli-

cation of interest is dynamic void growth under dynamic loading, and during high rate plastic deforma-

tions, the temperature may rise to a significant fraction of the melting temperature, and significant thermal

softening may occur. We therefore seek to incorporate thermal effects into the model. The influence of

temperature on material strength is typically obtained from uniaxial tension or compression experiments.

For simplicity, we assume that the effects of thermal softening and strain hardening may be written as

follows:
r ¼ rY � h1ðT �Þ � f ðeÞ: ð6Þ
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Here, T � is the temperature rise (room temperature is taken as the reference), and h1ðT �Þ is a thermal

softening function. Then, the density of statistically stored dislocations in Eq. (3) can be rewritten to include

the effect of temperature:
qS ¼ rYf ðeÞð � rYÞ2 � h21ðT �Þ= Malb
� �2

: ð7Þ
Eq. (7) includes the influence of temperature on recovery: thermal energy facilitates the motion and an-

nihilation of dislocations so that the dislocation density will be reduced because of the temperature rise. In

the description of dislocation densities in Eq. (1), we separated the dislocations into two different categories,
statistically stored dislocations and geometrically necessary dislocations, in terms of their different gener-

ation mechanisms. However, it appears reasonable to assume that thermal softening results in the recovery

of both types of dislocation. Following Eq. (7), we rewrite the density of geometrically necessary dislo-

cations qG as
qG ¼ kg � h22ðT �Þ=b; ð8Þ

where h2ðT �Þ is a second thermal softening function characterizing the temperature dependency of qG. The

temperature dependency of qG could perhaps be examined using micro- or nano-indentation experiments at

different temperatures, but this is beyond the scope of this study. With thermal softening taken into ac-

count, the constitutive law (2) for strain gradient plasticity is modified to give
r ¼ rY

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2ðeÞ � h21ðT �Þ þ lg � h22ðT �Þ

q
¼ rYhðT �Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2ðeÞ þ lg

p
; ð9Þ
where the thermal softening has been assumed to have the same form for qG and qS : h2ðT �Þ ¼
h1ðT �Þ ¼ hðT �Þ to simplify the problem. In the region of elastic deformations only, thermo-elasticity is

applied
r ¼ rY � hðT �Þ � e=eY: ð10Þ
On the elastic–plastic boundary (e ¼ eY so that f ðeÞ ¼ 1), the continuity of the effective stress indicates the

effective plastic strain gradient should be zero.

2.2. Mechanism-based strain gradient plasticity

Gao, Huang and coworkers (Gao et al., 1999; Huang et al., 2000) proposed a multiscale approach to

construct the constitutive laws, the equilibrium equations and the boundary conditions for strain gradient

plasticity. A modified decomposition of the strain gradient tensor was proposed by Jiang et al. (2002),

because a pure volumetric strain results in a deviatoric strain gradient in Gao and Huang�s original de-

composition. Following the same approach, we reconstruct the constitutive equations for strain gradient
plasticity, incorporating the effect of temperature:
rik ¼ Kdikepp þ
2r
3e

e0ik ð11Þ
and
sijk ¼ l2e KHijk

�
þ rUijk þ

r2
Yh

2ðT �Þ
r

Wijk

�
; ð12Þ
where
Uijk ¼
1

e
ðKijk �PijkÞ; Wijk ¼ f ðeÞf 0ðeÞPijk; e ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2

3
e0ije

0
ij

r
; g ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
g0ijkg

0
ijk

q
; ð13Þ
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Kijk ¼ 2g0ijk

h
þ g0kij þ g0kji

i.
72; ð14Þ

Pijk ¼ e0ikg
0
jmn

h
þ e0jkg

0
imn

i
� e0mn

.
54e2; ð15Þ

Hijk ¼
1

24
dikgjpp
�

þ djkgipp
�
; ð16Þ

r ¼ rYhðT �Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2ðeÞ þ lg

p
ð17Þ
and
g0ijk ¼ gijk � gHijk; gHijk ¼
1

3
epp;jdik
�

þ epp;idjk � epp;kdij
�
: ð18Þ
Here K is the bulk modulus, eij ¼ ðui;j þ uj;iÞ=2 are the strains, e0ij ¼ eij � dijepp=3 are the deviatoric strains,
g0ijk is the deviator of the strain gradient gijk ¼ uk;ij, and sijk are the higher order stresses which are work

conjugate to the strain gradient gijk.
The new length parameter le ¼ bðl=rYÞb introduced in Eq. (12) is called the mesoscale cell size and

characterizes the transition from standard plasticity to gradient plasticity. The constant b is suggested

(Huang et al., 2000) to take values between 1 and 10. Bazant (2002) argues that the asymptotic behavior at

small sizes is unreasonably strong in Gao and Huang�s dislocation-based strain gradient plasticity. One

suggestion is that the third-order stresses sijk be eliminated, corresponding to le ¼ 0 (or b ¼ 0). We will vary

b from 0 to 10 to examine the influence of the mesoscale cell size in our specific problem of void growth.
In formulating the above constitutive laws, we assume that the temperature is uniform within the

mesoscale ‘‘cell’’. If temperature is not uniform, the third-order stresses sijk would be affected while the

second-order stresses rij remain unaffected. If the size of the mesoscale cell is sufficiently small (compared

with the intrinsic material length l), the influence of temperature gradient on the third-order stress is

negligible. Otherwise, the influence of temperature gradient on the third-order stress has to be considered,

which we leave to future investigation.

The equilibrium equation is given by
rik;i � sijk;ij þ fk ¼ 0; ð19Þ

where fk is the body force. The traction boundary condition is
tk ¼ ni rik

�
� sijk;j

�
� Dj njsijk

� �
þ Dk ninjnpsijp

� �
þ ninjsijk
�

� nkninjnpsijp
�
ðDqnqÞ: ð20Þ
Here, ni is the unit normal to the surface and Dj ¼ ðdjp � njnpÞ o
oxp

is the surface gradient operator. When the

principle of virtual work is applied to obtain the equilibrium equation in strain gradient plasticity, an

additional traction appears due to the existence of the third-order stress:
sk ¼ ninjsijk � nkninjnpsijp: ð21Þ
Note this additional traction sk acts only on the boundary where the traditional traction tk is applied, and in

the case where only traction boundary conditions are applied and the surface of the body is smooth, or in

the case where only displacement boundary conditions are applied, this additional traction condition will

disappear. For the problem of spherical void growth that we consider, the additional traction boundary

condition in (21) disappears as only traction boundary conditions are applied (traction free on the void

surface) and the surfaces of the body are smooth (spherical).

When the material is only elastically deformed, the equilibrium Eq. (19) reduces to
rik;i þ fk ¼ 0 ð22Þ
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with ordinary traction boundary conditions
Fig. 1.

drosta

divide
tk ¼ nirik: ð23Þ

Note that there is no plastic strain gradient, and therefore, no third-order stress in the elastic region. On the

elastic–plastic boundary, the third-order stresses disappear, but their derivatives may still exist. Thus, an

inconsistency may arise if we apply the equilibrium equations (19) and (22) or apply the boundary con-

ditions (20) and (23) to the elastic–plastic boundary at the same time. This possible inconsistency can be

avoided if the third-order stresses can be neglected as Ba�zzant suggested, which corresponds to le ¼ 0 in

Eq. (12).

2.3. Kinematics

Consider an infinite medium containing a spherical void and subjected to a remote far-field hydrostatic

loading as shown in Fig. 1. As the far-field loading papp is increased, the surface of the void yields first, and

then the elastic–plastic boundary (denoted as rc) propagates outwards. This problem is essentially a 1-D

problem and the deformation is accordingly described by
r ¼ rðR; tÞ; ð24Þ
where r and R are the radii in the current and undeformed configurations respectively. We use A to denote

the initial void radius, and a to denote the current void radius. If we assume elastic–plastic incompress-

ibility, this requires
r3 � R3 ¼ a3 � A3: ð25Þ
The particle velocity can then be expressed in terms of the velocity of the void surface
vr ¼ _rr ¼ a2 _aa=r2: ð26Þ
It follows that the rates of deformation in the current configuration are
Drr ¼ dvr=dr ¼ �2a2 _aa=r3; Dhh ¼ D// ¼ vr=r ¼ a2 _aa=r3: ð27Þ
After integrating with respect to time, the strains can be obtained as
err ¼ �2ehh ¼ �2e// ¼ �2 lnðr=RÞ: ð28Þ
cr
a

appp

appp

appp

appp

Schematic diagram of the spherical model: an infinite body contains a single spherical void and is subjected to a remote hy-

tic tensile loading. Once the void surface yields, the elastic–plastic boundary (denoted by its radius, rc) propagates outwards. rc
s the whole region into two parts: the inner elastic–plastic region and the outer purely elastic region.
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The rates of the strain gradient are given in terms of the rate of deformation by
_ggrrr ¼ oDrr=or; _gghhr ¼ oDhh=or; _gg//r ¼ oD//=or;

_ggrhh ¼ _gghrh ¼ ðDrr � DhhÞ=r; _ggr// ¼ _gg/r/ ¼ ðDrr � D//Þ=r
ð29Þ
and the strain gradients are then
ghhr ¼ g//r ¼ grhh ¼ ghrh ¼ gr// ¼ g/r/ ¼ �grrr=2 ¼ �3ð1=R� 1=rÞ: ð30Þ
Using the definition in (18b), the hydrostatic part of the strain gradient is gHijk ¼ 0, because of the incom-

pressibility epp ¼ 0. Then, the effective strain and the effective strain gradient become
e ¼ 2 lnðr=RÞ; g ¼ 3
ffiffiffiffiffiffiffiffi
5=2

p
ð1=R� 1=rÞ: ð31Þ
Setting e ¼ eY, we obtain the elastic–plastic boundary rc (in the current configuration). Once the void grows

sufficiently large ða3 � A3Þ, the position of the elastic–plastic boundary can be approximated as

rc=a ¼ ð 2
3eY

Þ1=3. The effective strain gradient can also be calculated on the elastic–plastic boundary and is

denoted as g0. Note that g0 represents the gradient of the elastic strain. There is no plastic deformation, so
that there are no geometrically necessary dislocations on the elastic–plastic boundary. Therefore, we should

subtract the gradient of elastic strain from the total effective strain gradient g when we calculate the effective

stresses from Eq. (9) in the plastic zone. Otherwise, the effective stress calculated from elasticity would be

inconsistent with that calculated using strain gradient plasticity. In this work, g0 is uniformly subtracted

from the effective strain gradient in the plastic zone as a first-order approximation.

2.4. Conservation of energy

During plastic deformation, most of the plastic work is dissipated in the form of heat, which results in a

local temperature rise and softening of material. The plastic work increment per unit volume is
dw ¼ r0
ij de

0
ij þ s0ijk dg

0
ijk: ð32Þ
Here, r0
ij ¼ rij � rH

ij and s0ijk ¼ sijk � sHijk are the deviatoric parts of the second- and third-order stresses,

respectively. The first term on the right hand side in Eq. (11) represents the hydrostatic part of the second-

order stresses rH
ij . Similarly, the counterpart in Eq. (12) represents the hydrostatic part of the third-order

stresses sHijk. Eq. (32) shows that plastic work is done not only by the second-order stresses against plastic

strain but also by the third-order stresses against the plastic strain gradient.

For this spherically symmetric problem, the conservation of energy requires
qCp dT � ¼ k
r2

o

or
r2
oT �

or

� �
dt þ fdw; ð33Þ
where q is the density of the material, Cp is the specific heat at constant pressure, k is the thermal con-

ductivity, t is the time, and f is a coefficient representing the fraction of plastic work transformed into heat
(assumed to be 0.9 in our case). The left hand side of Eq. (33) represents the rate (per unit volume) of the

energy needed to increase the temperature by dT �. On the right hand side, the first term represents the

amount of heat conducted away in time dt, and the second term is the rate of plastic work converted into

heat. In the localized region near the surface of the void, the rate of plastic work is very high, and therefore,

the temperature rise may be very high. If the heat is being conducted away sufficiently quickly, the tem-

perature in the matrix material will be uniformly low, and the influence of thermal softening on void growth

will be negligible. In contrast, if the heat cannot be conducted away sufficiently quickly, the temperature in

the matrix near the surface of the void will build up and the temperature rise might affect the growth of the
void.
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A diffusion length is typically associated with heat conduction, and characterizes how far heat can be

conducted away in a given time-period. However, heat is only generated in the plastic zone. Therefore, if

the thermal diffusion length is much smaller than the size of the plastic zone, the effect of heat conduction

on void growth will be negligible; if it is much larger, the thermal diffusion will conduct heat away suffi-
ciently quickly and the effect of thermal softening on void growth will be negligible. A scaling law is used to

illustrate the length dependency of the influence of heat conduction on void growth. The dimensionless

temperature rise eTT and the dimensionless radius ~rr are defined as
eTT � ¼ T � � c; ~rr ¼ r=a; ð34Þ
where c is the thermal softening coefficient and a the current void size. Eq. (33) can now be rewritten in

terms of the scaled quantities as
qCp

c
� deTT � ¼ k

a2c
� 1
~rr2

o

o~rr
~rr2
oeTT �

o~rr

 !
� dt þ f � dw: ð35Þ
Eq. (35) indicates that the influence of heat conduction strongly depends on the current void size. The

smaller the void is, the stronger the influence of heat conduction on void growth. The length and time
dependency of the influence of heat conduction on void growth has been thoroughly explored in our

previous study Wu et al. (2003b), where the effect of strain gradient is absent. In this paper, the length

dependence of the influence of heat conduction coupled with the effect of strain gradient is examined

through numerical simulations.
3. Effect of strain gradient on void growth

In this section, we first calculate the threshold stresses for the unstable growth of voids both in the

athermal and in the adiabatic cases, with a view toward addressing the dependence of the threshold stress

on the intrinsic material length. Next, we simulate the dynamic growth of voids and examine the combined

effects of inertia, thermal softening, heat conduction and strain gradient on void growth.
3.1. Effect of strain gradient on instability of void growth

In spherical coordinates, the equilibrium equation (19) in the plastic deformation region reads
drrr

dr
þ 2ðrrr � rhhÞ

r
� d

dr
dsrrr
dr

�
þ 2

r
srrrð � srhh � shhrÞ

	
� 2

r
d

dr
srrrð

�
� srhhÞ

þ 1

r
2srrrð � 5srhh � 3shhrÞ

	
¼ 0: ð36Þ
The equilibrium equation (22) in the elastic region can also be rewritten in spherical coordinates,
drr

dr
þ 2ðrrr � rhhÞ

r
¼ 0: ð37Þ
A free traction boundary is applied to the surface of the void, and a dead-load boundary is applied at

infinity ðrr ¼ pappÞ. The loading history is shown in Fig. 2: a remote loading is applied at a constant rate to
a given level pS in a rise time tR, and is then held steady for a time th. After integrating Eqs. (36) and (37),

one may obtain the applied stress for void growth, which is balanced by the resistant stress:
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Fig. 2. History of applied far-field loading. Initially the load increases at a constant loading rate until the end of the rise-time tR, and is

then held steady at magnitude pS for an additional time th.
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papp ¼ pres ¼ 2

Z 1

rc

rhh � rrr

r
dr þ 2

Z rc

a

rhh � rrr

r



þ 3 srrr � 2srhh � shhrð Þ

r2

�
dr: ð38Þ
Here pres represents the resistance of the matrix material surrounding the void to the expansion of the void

through elastic and plastic deformation. We obtain the second- and third-order stresses using the con-

stitutive laws developed in Section 2.2, and using the strains and strain gradients calculated in Section 2.3.
re ¼ rYh1ðT �Þx; x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2ðeÞ þ lðg� g0Þ

p
;

srrr ¼
ffiffiffi
2

p
l2e rYh1ðT �Þ
9
ffiffiffi
5

p � f ðeÞf
0ðeÞ

x
� ðg� g0Þ;

shhr ¼ s//r ¼ � l2e rYh1ðT �Þ
9
ffiffiffiffiffi
10

p � x
e
� ðg� g0Þ;

srhh ¼ sr// ¼ shrh ¼ s/r/ ¼ � l2e rYh1ðT �Þ
18

ffiffiffiffiffi
10

p � x
e

�
þ f ðeÞf 0ðeÞ

x

�
� ðg� g0Þ:

ð39Þ
Here, g is the effective strain gradient and g0 the effective strain gradient on the elastic–plastic boundary.

Using (39) in Eq. (38), and noting that re ¼ rhh � rrr and
R1
rc

re
r dr ¼ rY

3
(from the linear elastic solution), the

resistant stress is given by
pres ¼ 2

3
rY þ 2rY

Z �rrc

�aa

h1x
�rr

d�rr þ 2rY

3
ffiffiffiffiffi
10

p � le
l

� �2

� l
A

� �2

�
Z �rrc

�aa

h1
�rr2

� 2x
e

�
þ 3f ðeÞf 0ðeÞ

x

�
� ð�gg� �gg0Þd�rr:

ð40Þ
Here, we normalize R, r, l, a, rc, g and g0 by the initial void size A so that R ¼ R=A, �rr ¼ r=A, �ll ¼ l=A,
�aa ¼ a=A, �rrc ¼ rc=A, �gg ¼ g � A and �gg0 ¼ g0 � A. Note that the third term on the right hand side in Eq. (40) is

proportional to the square of the mesoscale cell size le, so that the resistant stress depends on the mesoscale

cell size. However, the mesoscale cell size to intrinsic material length ratio ðle=l ¼ brY=18a2lÞ is typically
very small. Therefore, an appreciable effect of the mesoscale cell size on the resistant stress is only expected
at large l=A ratios. Also note that, for any given l=A ratio, the integral

R �rrc
�aa

h1
�rr2 � ð2xe þ 3f ðeÞf 0ðeÞ

x Þ � ð�gg� �gg0Þd�rr
approaches zero as the void grows to infinity (this has been checked through numerical computations).



6642 X.Y. Wu et al. / International Journal of Solids and Structures 40 (2003) 6633–6651
That is, if the void becomes sufficiently large, the dependence of the resistant stress on the mesoscale cell size

will be negligible. A thorough examination of these issues is obtained through the numerical simulations

that we describe next, addressing the dependence of void growth on the resistant stress when the intrinsic

material length, mesoscale cell size and temperature are considered.
Fig. 3 represents the resistant stresses plotted against the relative growth of the void, in both the

athermal (solid line) and adiabatic (dotted line) conditions. The material properties correspond to maraging

steel and its thermo-mechanical properties are presented in Table 1. The intrinsic material length to initial

void size ratio is fixed at l=A ¼ 20 so that the void is initially considerably smaller than the material length

scale, and the parameter b is fixed at b ¼ 1:0 (Table 1). The plots show that, as the void begins to grow, the

resistant stress pres initially increases but then reaches a maximum and begins to drop once the relative void

growth ða=AÞ exceeds a critical value (which is typically less than 3); for the specific case of the athermal

condition, Huang et al. (2000) obtained similar results. The maximum value of the resistant stress is defined
as a ‘‘threshold stress’’ for the unstable growth of the void. If the applied stress exceeds this threshold stress

and the effect of inertia is not considered, the void can grow without bound. Once the relative void growth

ða=AÞ exceeds the critical value, the resistant stress begins to decrease as the void continues to expand, and

eventually saturates at the critical stress for the unstable growth of void predicted by the classical plasticity

theory (corresponding to the l=A ¼ 0 case in gradient plasticity). Thus, once the void has expanded to a
Void Growth a /A

N
or

m
al

iz
ed

 R
es

is
ta

nt
 S

tr
es

s 
P

re
s / 

Y

0

1

2

3

4

5

6

7

0 5 10 15 20 25 30

athermal

adiabatic

σ

Fig. 3. The applied stresses versus the relative growth of void both in the athermal (represented by the solid line) and adiabatic

(represented by dotted line) condition. The material properties correspond to maraging steel with rY ¼ 1760 MPa and l ¼ 73 GPa,

while other thermo-mechanical properties are presented in Table 1. The intrinsic material length to initial void size ratio is fixed at

l=A ¼ 20, and the parameter b is fixed at b ¼ 1:0.

Table 1

Material properties of maraging steel

Shear�s
modulus

(GPa)

Yield stress

(MPa)

Yield

strain

Strain-

hardening

exponent

Specific heat

(kJ/kgK)

Conductivity

(W/mK)

Density

(kg/m3)

Thermal

softening

coefficient

(1/K)

73 1760 0.008 0.01 480a 25.3 8.0· 103 0.001

aData from www.matweb.com.
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sufficiently large size, the surrounding material exhibits a constant resistance to the further expansion of the

void. This has important implications in the dynamic growth of voids, as we discuss in the next section.

Fig. 3 shows that thermal softening greatly decreases the resistant stress, because the hardening effect of

the plastic strain gradient significantly increases the stress level at this large l=A ratio. This results in a larger
amount of plastic work being developed during void growth, and this results in a higher local temperature

rise.

Fig. 4 considers the dependence of the calculated threshold stress (normalized by the yield stress) on the

intrinsic material length to initial-void-size ratio, for the athermal and adiabatic conditions and for three

different values of the parameter b ðb ¼ 0; 1; 10Þ. The material considered in these simulations remains the

maraging steel used in the simulations of Fig. 3, with an intrinsic material length of around 1.4 lm. Note

that changes in b correspond to changes in the mesoscale cell size le, with the limit b ¼ 0 corresponding to

the third-order stress being neglected. Both in the athermal and adiabatic conditions, the threshold stresses
in the b ¼ 1 case are almost identical to those in the b ¼ 0 case, and no dependency of threshold stress on

mesoscale cell size is observed. This is consistent with our previous asymptotic analysis that showed that no

appreciable dependency of threshold stress on mesoscale cell size is expected unless the l=A ratio is suffi-

ciently large (how large depends on le=l and so on b). In the b ¼ 1 case, the maximum value of the l=A ratio

of 40 considered here is not large enough to display the influence of the mesoscale cell size on the threshold

stress. However, if the parameter b is increased to 10, the threshold stresses begin to be significantly in-

creased immediately after the l=A ratio reaches about 10. When the l=A ratio is less than 10, the threshold

stress is insensitive to the mesoscale cell size for b ¼ 0–10. This result is consistent with the result obtained
by Huang et al. (2000) in the athermal case. Note that the limit l=A ¼ 0 corresponds either to classical

plasticity or to a sufficiently large initial void size.

Fig. 4 reveals the strong dependence of the threshold stress on the l=A ratio. As the initial void size A
decreases, so that l=A increases to about 40, the threshold stress increases by 10% in the b ¼ 0 case and by

300% in the b ¼ 10 case. The dependence of threshold stress on l=A ratio indicates that there does not exist

a critical stress for cavitation instability in the strain gradient theory, because the threshold stress is infinite

for an infinitesimal void. The unlimited growth of voids requires the surmounting of the threshold stress by

the applied stress. Therefore, the magnitude of a given applied loading will determine a critical value of
initial void size (called the cut-off size in this paper)––any void that is initially smaller than this cut-off size

will stop growing after a very limited growth under the given applied stress.
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Examining the adiabatic results in Fig. 4, we see that the effects of thermal softening on the threshold

stress are much stronger in the b ¼ 10 case than in the b ¼ 0 case, for the same reasons described previously

in the discussion of Fig. 3.

3.2. Effect of strain gradient on dynamic void growth

Up to this point, we have not considered the effect of inertia, which is a key issue in the problem of void

growth. When the effect of inertia is taken into account, the equation of motion in the plastic deformation

region becomes
drrr

dr
þ 2ðrrr � rhhÞ

r
� d

dr
dsrrr
dr

�
þ 2

r
srrrð � srhh � shhrÞ

	
� 2

r
d

dr
srrrð

�
� srhhÞ

þ 1

r
2srrrð � 5srhh � 3shhrÞ

	
¼ q€rr: ð41Þ
In the purely elastic region, this reduces to
drrr

dr
þ 2 rrr � rhhð Þ

r
¼ q€rr: ð42Þ
The incompressibility of material implies that the particle acceleration can be determined in terms of the

velocity and acceleration of particles on the void surface ðr ¼ aÞ:
€rr ¼ d

dr
a2€aa
r

 
þ 2a _aa2

r
� a4 _aa2

2r4

!
: ð43Þ
Integrating Eqs. (41) and (42) with respect to the current radius r, one readily obtains,
papp � q a€aa
�

þ 3

2
_aa2
�

¼ pres; ð44Þ
where the resistant stress pres is defined in Eq. (40). Comparing this with Eq. (38), the additional term on the

left hand side in (44) represents the effect of inertia. In the absence of strain gradient effects, all voids (even
with different initial sizes) tend to achieve a constant rate of growth, due to the dominating effect of inertia

in the long term (Wu et al., 2003a). In strain gradient plasticity, our analyses in the previous section show

that the right-hand side in (44) encounters a maximum value (the threshold stress) when the void ap-

proximately triples its size (Fig. 3), and that the threshold stress greatly increases as the initial void size

decreases (Fig. 4). Further, without the effect of inertia, the stress level of a given applied loading deter-

mines a cut-off size. In this section we use numerical simulations to determine whether the effect of inertia

changes the cut-off size. The combined effects of thermal softening and heat conduction on dynamic void

growth are also examined through numerically solving the equation of motion (44) and the conservation of
energy (33).

In the problem of void growth, both our scaling asymptotic analysis and numerical calculations indicate

that even if the dependence of the resistant stress on mesoscale cell size is negligible once the void grows

sufficiently large, the influence of mesoscale cell size on threshold stress could be extremely strong at ex-

tremely small sizes. In the following simulations of dynamic void growth (including inertia), therefore, we

will take b ¼ 0 as Ba�zzant suggested. The effect of temperature is still included since thermal softening could

greatly lower the threshold stress even in the b ¼ 0 case.

The numerical calculations are performed for the same maraging steel in the athermal, adiabatic and
diffusive conditions, using the loading history that is described in Fig. 2 (the loading rate is 10 GPa/ls with
the final loading level fixed at 6:2rY). Fig. 5 compares the computed dynamic growth of voids (in the
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athermal condition) that is predicted by the strain gradient plasticity theory and classical plasticity theory

for four specific initial void sizes: A ¼ 10, 1 lm, 80, and 70 nm. The solid lines represent the current void
sizes as predicted by the strain gradient plasticity theory, while the dotted lines represent the current void

sizes predicted by classical plasticity. In the A ¼ 10 lm case, the inclusion of the strain gradients does not

affect the dynamic growth of the void significantly because the initial void size is already much larger than

the intrinsic material length l of 1.4 lm. When the initial void size is on the order of the intrinsic material

length, as in the A ¼ 1 lm case, an appreciable delay of the void growth is observed due to the effect of the

strain gradient. The effect of strain gradient becomes far more significant when the initial void sizes are

reduced to submicrons, and the existence of the cut-off size can be seen in Fig. 5. The earlier non-inertial

calculation showed that for a loading of 6:2rY the cut-off size would be 0.07 lm. When the inertia is in-
cluded, Fig. 5 shows that a 0.07 lm void expands and then stops growing (the growth stops once the

applied load stops increasing and is held steady). In contrast, a 0.08 lm void can grow without bound. This

indicates that the cut-off size in the inertial case is a number between 0.07 and 0.08 lm for this applied

loading, and that the effect of inertia does not appreciably change the cut-off size.

As the void grows, the resistant stress pres eventually saturates (Fig. 3) at a stress that corresponded to the

critical stress (denoted as pcr) for the unstable growth of voids, and predicted by the classical plasticity

theory. Once the resistant stress pres saturates at pcr, one obtains an asymptotic solution to Eq. (44):
_aae ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðpapp � pcrÞ=3q

p
: ð45Þ
Eq. (45) implies that voids will achieve a constant ‘‘equilibrium’’ rate _aae that depends only on the degree of
supercriticality ðpapp � pcrÞ and not on the void size. This is essentially identical to the result obtained in our

previous study (Wu et al., 2003a) in the absence of a strain gradient effect. Thus, the dynamic growth in the

strain gradient and non-strain gradient cases will eventually achieve the same ‘‘equilibrium rate’’. However,

there is a significant difference between these two cases. In the non-strain gradient case, the dynamic growth

of all voids eventually achieves the equilibrium growth rate under supercritical loading; in contrast, in the

strain gradient case, only those voids whose initial sizes are greater than the cut-off size can achieve this

equilibrium growth rate.

Fig. 5 shows that there is a significant delay of dynamic void growth in the 0.08 lm case. This is because
the threshold stresses are different for voids with different initial sizes, and for a given rate of applied
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loading, the times needed to surmount the threshold stress are different. For example, the threshold stress is

around 6:0rY for a 0.08 lm void, while the critical stress for cavitation instability predicted by the classical

plasticity theory is 3:6rY. Therefore, classical plasticity predicts that all voids will start to grow without

bound immediately after the applied stress exceeds 3:6rY. However, strain gradient plasticity implies that
no appreciable growth occurs until the applied stress exceeds 6:0rY in the 0.08 lm case. As the applied

loading rate in these calculations is 10 GPa/ls and the yield stress is rY ¼ 1760 MPa, it takes 400 additional

nanoseconds to reach the 6:0rY threshold stress in the 0.08 lm case (i.e., 400 ns after the time when the

applied stress reaches the 3:6rY critical stress predicted by the classical plasticity theory). Thus, the effect of

strain gradient will result in a substantial delay (more than 400 ns) of growth in the 0.08 lm case, as shown

in Fig. 5.

Thermal effects on the dynamic growth of voids under strain gradient plasticity are shown in Fig. 6,

where the adiabatic (dotted lines) and thermally diffusive (solid lines) growth histories of voids are pre-
sented for various initial void sizes. When the initial void size is 10 lm, the thermally diffusive and adia-

batic void growth histories are nearly identical. This negligible influence of heat conduction on dynamic

void growth for large initial voids was demonstrated in our previous work (Wu et al., 2003b) based on non-

gradient plasticity. In the 1 lm case, an appreciable delay of the dynamic void growth is observed in the

thermally diffusive case as compared with the adiabatic case. When the initial size goes down to 0.1 lm, an

even larger delay of void growth is observed in the thermally diffusive case. This indicates that heat can be

conducted away sufficiently quickly from the inner hot region near the void surface when the initial void

size is on the order of hundreds of nanometers. Thus, the threshold stress will be larger in the thermally
diffusive condition than in the adiabatic condition (Fig. 4 shows that the adiabatic threshold stress is ap-

preciably lower than the athermal threshold stress). It thus takes longer to surmount the threshold stress

in the thermally diffusive case than in the adiabatic case, resulting in the delay of the diffusive growth of

voids. Further, since the threshold stress increases in the thermally diffusive condition due to heat con-

duction, the cut-off size described in Fig. 5 also increases. Fig. 6 shows that in the adiabatic condition a 0.03

lm void will grow while a 0.02 lm void will not, so that the adiabatic cut-off size is between 0.02 and 0.03

lm, whereas the cut-off size is between 0.05 and 0.06 lm in the thermally diffusive case. Thus, the cut-off

size in the thermally diffusive case is close to that in the athermal case (between 0.07 and 0.08 lm, as shown
in Fig. 5).
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Fig. 6. Current void sizes versus time. The dotted lines represent the thermally adiabatic growth of voids, while the solid lines represent

the thermally diffusive growths. The effect of strain gradient is included.
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4. Discussion

Many micro-indentation and nano-indentation hardness experiments (Ma and Clarke, 1995; Nix and

Gao, 1998; Shu and Fleck, 1998; Swadener et al., 2002) have shown the strong effects of strain gradients on
plastic deformation. However, there is little direct experimental evidence of the effects of strain gradients on

void growth. Analytical and numerical results in this paper and other literature (Fleck and Hutchinson,

1997; Huang et al., 2000) have demonstrated that the effects of strain gradients greatly raise the stress level

required for the unstable growth of voids. This could have important implications for ductile fracture,

which the following two micrographs of the fracture surfaces of copper might help to illustrate.

Our previous study (Wu et al., 2003b) shows that the influence of thermal softening is much stronger for

maraging steel with respect to other materials, so that the numerical simulations have been performed on

maraging steel in the previous section in order to better demonstrate the combined effects of thermal
softening and strain gradient. This discussion section will be focused on micrographs of the fracture sur-

faces of copper, not only because the experimental evidence available on maraging steel is limited but also

the relatively weak influence of thermal softening for copper (Wu et al., 2003b) helps to single out the effect

of strain gradient on ductile fracture (thermal softening lowers the critical stress 0.6 GPa in maraging steel,

but only 0.1 GPa in copper). The influence of thermal softening and thermal diffusion will be discussed in

more detail in this section.

Fig. 7a is a micrograph taken from the fracture surface in OFHC copper in ductile spallation (Zurek

et al., 1988). The duration of the loading pulse is on the order of a microsecond. Suppose that the applied
loading is over the critical stress for the unstable growth of void growth predicted by the classical plasticity

theory (otherwise, the growth of voids will be very limited so that ductile failure will not take place in this

experiment). According to our previous study in the absence of strain gradient (Wu et al., 2003a), voids of

all sizes achieve the same ‘‘equilibrium’’ growth rate under supercritical loading and rapidly tend toward

similar final sizes regardless of their initial sizes. The applied loading level, the critical stress and the ma-

terial density determine the equilibrium growth rate, _aae ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðpapp � pcrÞ=3q

p
. The critical stress for the

unstable growth of voids depends on the material properties, such as the yield stress, the yield strain and the

strain-hardening exponent (Wu et al., 2003b); the critical stress in copper is typically 1–2 GPa depending on
purity, prior plastic work etc. (the spall strength quoted by Zurek et al. is 2.4 GPa). Therefore, the

‘‘equilibrium’’ growth rate will reach tens of micrometers per microsecond if the applied stress is over the

critical stress by more than a few percent. Thus, the duration of the loading pulse (on the order of a mi-

crosecond) is long enough for all voids to grow to similar final sizes, of the order of 10 lm. Fig. 7a shows

that the majority of voids on the fracture surface are around 8 lm with some smaller ones about 2 or 3 lm.
Fig. 7. (a) Voids on the fracture surface in OFHC copper (after Zurek et al., 1988) developed in a plate impact experiment. (b) Mi-

crovoids on the fracture surface in copper (after Moshe et al., 1998) developed during a laser shock experiment.
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Fig. 7b shows the fracture surface (Moshe et al., 1998) of a specimen made of annealed copper that was

forced to spall using a laser shock approach (now the pulse duration is only 2.2 ns). The spall strength in

this case was stated to be 9 GPa. The morphology of the fracture surface is now significantly different from

that of Fig. 7a. The number of voids observed on the fracture surface increases significantly, while the void
sizes greatly decrease. The majority of voids on the fracture surface are around 1 or 2 lm, while a small

number of voids are 4 or 5 lm in size. Factors that may contribute to the different morphologies of fracture

surfaces observed in Fig. 7a and b include the effects of heat conduction, rate dependency, void interaction,

strain gradients and void nucleation. We consider each of these in turn.

The influence of heat conduction on dynamic void growth strongly depends on the void size and the rate

of void growth (Wu et al., 2003b). At the early stages of void growth, heat can be more easily conducted

away from the surface of smaller voids so that heat conduction retards the growth of smaller voids

compared with that of bigger ones. However, the effect of heat conduction is appreciable only when the
adiabatic critical stresses are appreciably lower than the athermal critical stress, such as in 4340 steels and

maraging steels. Thermal softening does not greatly lower the critical stress in copper due to the low

strength of the material (Wu et al., 2003b). Further, when the applied stress is much higher than the critical

stress as in Fig. 7b, all voids start rapid, adiabatic growth according to the classical plasticity theory.

Therefore, heat conduction cannot account for the morphology of the final fracture surface shown in

Fig. 7b.

Rate dependence can strongly delay the growth of smaller voids especially in the early stages of void

growth (Wu et al., 2003a). The effect of rate dependence on dynamic void growth becomes greater as the
rate sensitivity of the material increases (Wu et al., 2003a), and pure annealed copper is a rate sensitive

material. Thus, rate dependence can result in a more non-uniform distribution of void sizes the higher

loading rate and shorter pulse durations of Fig. 7b (compared with the relatively uniform distribution of

void sizes at lower loading rate and longer pulse duration in Fig. 7a). However, rate dependence cannot

account for the many more voids that appear on the fracture surface of Fig. 7b, because the rate

sensitivity of a material does not affect the critical stress for the unstable growth of voids (Wu et al.,

2003a).

Void interaction can accelerate the dynamic growth of voids (and has stronger effects on the big voids)
when the volume fraction of voids becomes high (Wu, 2002). However, void interaction has little influence

on the void growth in the early stages, and does not affect the number of voids that grow; thus void in-

teractions cannot explain the increased number density of voids observed in Fig. 7b.

The two remaining factors, the effects of strain gradient and void nucleation, can both account for the

increased number density of voids observed in Fig. 7b. We consider the strain gradient effects first.

Because of the effect of strain gradients, the threshold stress for the unstable growth of voids depends

strongly on the initial void size if the initial size is smaller than the intrinsic material length (the threshold

stress increases as the initial void size decreases). For any given applied load level, there will exist an initial
void size below which the threshold stress for void growth will be greater than the applied stress, so that

voids below this initial size will not grow. In this sense, in strain gradient plasticity the stress level of the

applied loading determines the cut-off size for the rapid growth of voids. Voids cannot grow to visible sizes

if their initial sizes are less than this cut-off size. If the applied stress level is higher (as in the laser shock case

of Fig. 7b compared with the plate impact case of Fig. 7a), the cut-off size will be smaller so that more voids

will be expected on the fracture surface (as is observed). In Fig. 7b, the applied loading level is 9 GPa and

the duration of the loading pulse is 2.2 ns. According to Eq. (45), voids in the laser shock experiment will

achieve an ‘‘equilibrium’’ growth rate between 520 and 770 lm/ls (corresponding to critical stresses of 2
and 1 GPa). At these rates of growth, voids are expected to achieve 1–2 lm in 2.2 ns. Most of the voids

observed on the fracture surface are around 2 lm. Noting that void interactions may accelerate the growth

of the voids, the analytical prediction of void size is consistent with the experimental observation. As the

voids grow, the influence of strain gradient on dynamic void growth decreases, and in the long term, the
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effects of inertia will dominate void growth and all voids tend toward similar final sizes. However, if the

loading is not held long enough, as in the laser shock case, the effects of strain gradients will result in a

wider distribution of void sizes. Thus, consideration of the effects of strain gradients can account for the

larger numbers of voids and the smaller average void sizes in the fracture surface of Fig. 7b compared with
Fig. 7a.

Substantially increased void nucleation at high stresses is another factor that could account for the

morphology of the fracture surface in Fig. 7b. Void nucleation at small second phase particles is more

difficult than that at larger second phase particles (Argon et al., 1975), because the energetic ‘‘cost’’ to form

new surface has to be compensated by the elastic strain energy released from the second phase particle when

the separation of the interface takes place. At higher stresses, more voids can be nucleated since more elastic

strain energy is available. However, it is possible that in spallation experiments the kinetic energy that is

available can also compensate the energetic ‘‘cost’’ to form new surface. Further, Pardoen et al. (1998)
suggest that the interface between inclusions and the matrix in pure copper is very weak so that voids can be

easily nucleated even at low stresses. If this is the case, then the effects of strain gradients on void growth

may be responsible for the appearance of the fracture surface in Fig. 7b. This remains circumstantial ev-

idence, and further research is required to obtain experimental verification of strain gradient effects in the

void growth problem.
5. Summary

We have constructed constitutive laws that incorporate the effects of thermal softening for strain gra-
dient plasticity, and applied this modified theory to address the combined effects of temperature and plastic

strain gradients on the dynamic growth of voids. The study focuses on the dependence of the void growth

on two length scales introduced in the strain gradient plasticity theory: the intrinsic material length

l ¼ 18a2ðl=rYÞ2b and the mesoscale cell size le ¼ bðl=rYÞb.
When the initial void size A is smaller than the intrinsic material length l ðl=A � 1Þ, we confirm that the

effects of strain gradient greatly increase the threshold stress for the unstable growth of voids, and find that

thermal softening has strong effects in lowering the threshold stress. When the ratio of the intrinsic material

length to the initial void size is greater than 10, our numerical simulations show strong dependence of the
threshold stress on the mesoscale cell size. Our numerical results show the threshold stress in the b ¼ 10 case

is much higher than that in the b ¼ 0 case when the initial void size is small ðl=A > 10Þ (values of b between

1 and 10 are typically suggested). Thus, we take b ¼ 0 when we examine the effects of strain gradient on

dynamic void growth.

Because the threshold stress increases as the initial void size decreases, a cut-off size is then set by the

stress level of the applied loading. If the initial sizes of voids are smaller than this cut-off size, voids will stop

growing when the applied loading is held steady. If the initial sizes of voids are larger than the cut-off size,

the rapid growth of voids takes places when the applied loading surmounts the corresponding threshold
stresses. This suggests that more voids should appear on the fracture surface at a higher applied loading. As

the voids grow, the influence of strain gradient on dynamic void growth decreases. In the long term, the

effects of inertia will dominate void growth and all voids tend toward similar final sizes. However, if the

loading is not held long enough or the loading rate is not high enough, the effects of strain gradients will

result in a wider distribution of void sizes.

At the early stages of void growth, the effects of strain gradients greatly increase the stress and so the

effects of thermal softening on dynamic void growth become more important. Thermal softening and heat

conduction both affect the cut-off size of voids. Heat conduction also delays the rapid growth of voids and
the effects of heat conduction increases as the initial void sizes decrease.
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